Salubrinal attenuated retinal neovascularization by inhibiting CHOP-HIF1α-VEGF pathways

نویسندگان

  • Yaguang Hu
  • Xi Lu
  • Yue Xu
  • Lin Lu
  • Shanshan Yu
  • Qiaochu Cheng
  • Boyu Yang
  • Ching-Kit Tsui
  • Dan Ye
  • Jingjing Huang
  • Xiaoling Liang
چکیده

Retinal neovascularization (RNV) related disease is the leading cause of irreversible blindness in the world. The aim of this study is to identify whether salubrinal could attenuate RNV by inhibiting CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP)- hypoxia inducible factors 1α (HIF1α) -vascular endothelial growth factor (VEGF) pathways in both mouse retinal microvascular endothelial cells (mRMECs) and oxygen-induced retinopathy (OIR) mouse model. After being treated with salubrinal (20μmol/L) or CHOP-siRNA, mRMECs were exposed to a hypoxia environment. OIR mice were intraperitoneally injected with salubrinal (0.5 mg/kg/day) from P12 to P17. With salubrinal or CHOP-siRNA treatment, the elevated CHOP protein and mRNA levels in hypoxia-induced mRMECs were significantly decreased. HIF1α-VEGF pathways were activated under hypoxia condition, then HIF1α protein was degraded and VEGF secretion was down-regulated after salubrinal or CHOP-siRNA treatment. In OIR mice, the areas of RNV were markedly decreased with salubrinal treatment. Moreover, elevated expressions of CHOP, HIF1α and VEGF in retinas of OIR mice were all reduced after salubrinal treatment. It suggested that salubrinal attenuated RNV in mRMECs and OIR mice by inhibiting CHOP-HIF1α-VEGF pathways and could be a potential therapeutic target for hypoxia-induced retinal microangiopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.

Epigalloccatechin-3-gallate (EGCG) is the main polyphenol component of green tea (leaves of Camellia sinensis). EGCG is known for its antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic properties. Here, we identify EGCG as a new inhibitor of ocular angiogenesis and its vascular permeability. Matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) play a key ...

متن کامل

Oxalomalate reduces expression and secretion of vascular endothelial growth factor in the retinal pigment epithelium and inhibits angiogenesis: Implications for age-related macular degeneration

Clinical and experimental observations indicate a critical role for vascular endothelial growth factor (VEGF), secreted by the retinal pigment epithelium (RPE), in pathological angiogenesis and the development of choroidal neovascularization (CNV) in age-related macular degeneration (AMD). RPE-mediated VEGF expression, leading to angiogenesis, is a major signaling mechanism underlying ocular ne...

متن کامل

Inhibition of retinal neovascularization by siRNA targeting VEGF165

PURPOSE To investigate whether vector-based vascular endothelial growth factor 165 (VEGF)(165) targeted siRNA expression system (pSilencer(siVEGF)) could inhibit VEGF(165) expression in vitro and suppresses retinal neovascularization in the murine model of oxygen-induced retinopathy. METHODS pSilencer(siVEGF), from which siRNA targeting VEGF(165) could be generated, was constructed and transf...

متن کامل

Down-regulation of microRNA-155 attenuates retinal neovascularization via the PI3K/Akt pathway

PURPOSE We aimed to investigate the anti-angiogenic properties of miR-155 via in vitro and in vivo studies. METHODS miR-155 was knocked down using lentivirus-mediated RNA interference. The proliferation, migration, and tube formation of human retinal microvascular endothelial cells (HRMECs) were measured using BrdU, Transwell, and Matrigel assays, respectively. An oxygen-induced retinopathy (...

متن کامل

NADPH Oxidase 4-Derived H2O2 Promotes Aberrant Retinal Neovascularization via Activation of VEGF Receptor 2 Pathway in Oxygen-Induced Retinopathy

NADPH oxidase 4 (Nox4) is a major isoform of NADPH oxidase in retinal endothelial cells. Our previous study suggests that upregulation of Nox4 in retinal endothelial cells contributes to retinal vascular leakage in diabetes. In the current study, we investigated the role and mechanism of Nox4 in regulation of retinal neovascularization (NV), a hallmark of proliferative diabetic retinopathy (PDR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017